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Quantum-Classical Machine learning by Hybrid Tensor Networks
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Tensor networks (TN) have found a wide use in machine learning, and in particular, TN and deep
learning bear striking similarities. In this work, we propose the quantum-classical hybrid tensor
networks (HTN) which combine tensor networks with classical neural networks in a uniform deep
learning framework to overcome the limitations of regular tensor networks in machine learning.
We first analyze the limitations of regular tensor networks in the applications of machine learning
involving the representation power and architecture scalability. We conclude that in fact the regular
tensor networks are not competent to be the basic building blocks of deep learning. Then, we
discuss the performance of HTN which overcome all the deficiency of regular tensor networks for
machine learning. In this sense, we are able to train HTN in the deep learning way which is the
standard combination of algorithms such as Back Propagation and Stochastic Gradient Descent. We
finally provide two applicable cases to show the potential applications of HTN, including quantum
states classification and quantum-classical autoencoder. These cases also demonstrate the great
potentiality to design various HTN in deep learning way.

I. INTRODUCTION.

In recent year, tensor networks (TN) have drawn more
attention as one of the most powerful numerical tools for
studying quantum many-body systems [1–4]. Further-
more, TN have been recently applied to many research
areas of machine learning [5–8], such as image classifica-
tion [9–11], dimensionality reduction [12, 13], generative
model [10, 14], data compression [15], improving deep
neural network [16], probabilistic graph model [17], quan-
tum compressed sensing [18], even the promising way to
implement quantum circuit [19–23]. As a consequence,
people encounter the serious computing complexity prob-
lem and raise the question: Are the tensor networks able
to be the universal deep learning architecture? As we
know, the theoretical foundation of deep neural networks
is the principle of universal approximation which states
that a feed-forward network with a single hidden layer is a
universal approximator if and only if the activation func-
tion is not polynomial [24, 25]. In this context, the key
point of the question of tensor network machine learning
will be: Are the tensor networks able to be the universal
approximator?
Some pioneering researches have started to focus on

this fundamental problem. Ref. [26] propose the con-
cept of generalized tensor networks to outperform the
regular tensor networks particularly in term of the rep-
resentation power. Specifically, if the entanglement en-
tropy of the function violates the area low [27], then the
function can not be represented by regular tensor net-
works efficiently. Moreover, they try to combine gener-
alized tensor networks with convolution neural networks
together and achieve some good results. Note that they
take the convolutions as feature map, then place tensor
network in the final layer and take it as the classifier.
Ref. [16] propose the tensor regression network which re-
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place the full connect layer by tensor regression layer in
order to save storage space.This is another feasible way
to take advantage of tensor network in deep learning.
Ref. [28] provides a mathematic analysis of the repre-
sentation power of some typical tensor network factor-
izations of discrete multivariate probability distributions
involving matrix product states (MPS), Born machines
and locally purified states (LPS). Ref. [29] discusses the
equivalence of restricted boltzmann machines (RBM) and
tensor network states. They prove that this kinds of spe-
cific neural networks can be translated into MPS and
devise efficient algorithm to implement it. And based
on this, they quantify the representation power of RBM
from the perspective of tensor network. This insight into
tensor network and RBM guides the design of novel quan-
tum deep learning architectures.

Different from these previous works, we propose the
concept of Hybrid Tensor Networks (HTN) which com-
bine tensor networks with classical neural networks into
a uniform deep learning framework. We show the
schematic of this universal framework of HTN in Fig. 1.
In this framework, people are able to freely design HTN
by adding some specific tensor networks such as Matrix
Product States (MPS), Projected Entangled Pair States
(PEPS) or Tree Tensor Networks (TTN) etc., and some
classical neural networks such as Fully-connected Net-
works (FCN), Convolutional Neural Networks (CNN) or
Recurrent Neural Networks (RNN) etc. at any part of
the HTN. And then train the whole network by the
standard combination of training algorithms such as the
Back Propagation (BP) and Stochastic Gradient Descent
(SGD). Therefore by introducing neuron with nonlinear
activation, HTN will be the universal approximator as
same as neural network. More importantly, HTN are
capable of dealing with quantum input states involving
both quantum entanglement states and product states.
In this way, the HTN will be a good choice of the im-
plementation of quantum-classical deep learning model.
Specifically, we discuss some preliminary ideas to design
HTN and provide some applicable cases and numerical
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experiments.

II. LIMITATIONS OF REGULAR TENSOR

NETWORKS MACHINE LEARNING

Although, as a kind of popular and powerful numerical
tools in quantum many-body physics, regular tensor net-
works expose some limitations on machine learning, such
as the limitations on representation power and architec-
ture scalability. All of these limitations restrict the ap-
plication of regular tensor networks on machine learning,
especially for deep learning. In this section, we conclude
it and also analyze some main points of them.

A. Representation power

General neural networks (NNs) are characterized by
the universal approximation theorem which states that
the feed-forward networks are able to approximate any
continuous function, which owing to the use of nonlinear
activation. So we treat it as a kind of so called universal
approximator. Based on this, NNs become the funda-
mental building blocks of deep learning. In contrast, TNs
are considered as linear function and therefore obey the
superposition principle in quantum mechanics. This is
characterized as the intrinsic feature of TNs in quantum
many-body system, but an obstacle to be a powerful uni-
versal approximator in machine learning. In this context,
people have to map all data points from original feature
space into the higher Hilbert space by means of nonlin-
ear feature map function. In some previous works [9, 11],
people use the feature map which is introduced by Eq.1
firstly as:

vs(x) =

√

(

d− 1

s− 1

)

(cos(
π

2
x))d−s(sin(

π

2
x))s−1 (1)

where s runs from 1 to d. By using a larger d, the TTN
has the potential to approximate a richer class of func-
tions. Furthermore, Ref.[26] discuss some other complex
feature maps we could use, even including neural net-
works such as CNNs. Based on these works, we under-
stand that the feature map actually play the key role
in tensor network machine learning, since it makes the
model with the capacity of approximating nonlinear func-
tion. It is also easy to understand this from the per-
spective of statistical machine learning theory such as
Support Vector Machine (SVM). In the context of SVM,
people always map data points into a higher feature space
and find a kernel function while addressing the nonlin-
ear issue, and it is called the “kernel trick”. However,
in the context of tensor network machine learning, we
shouldn’t just rely on this “kernel trick” to endow the
TNs with the capacity of universal approximation while
building a complex and deep tensor network model.

Moreover, for a specific machine learning task, we al-
ways have to train a bigger regular tensor network which
contains much more parameters than corresponding clas-
sical neural network. Taking our previous work as exam-
ple [11], we employed the TTN on benchmark of hand-
written digits classification. The experimental results
show us TTN contains too much parameters than almost
any classical model such as CNN and fully-connected net-
work (FCN). For comparison, we also implement a HTN
model and find the number of parameters it needs is less
than FCN’s, of course far less than TTN’s. We conclude
all these results in the Table I. From the perspective
of quantum simulation, we understand that simulating
quantum computing on classical computer always needs
exponential growth of parameters with the size of sys-
tems. It shows us the large number of parameters intrin-
sically leads to a severe problem -- comparing with exist-
ing deep learning model, it is difficult to train a regular
tensor network which has a same or better performance,
even it is impossible.
We also verify this conclusion by using some prelim-

inary regression experiments which directly reveal the
model’s capability of curve fitting. Table II shows us
the benchmark results on MNIST dataset. In this case,
we transfer the classification task into a simple regres-
sion issue by setting the label as a corresponding scalar.
Taking the class of image “6” as the example, we need to
train a model that outputs a scalar which closes to “6”
as soon as possible, rather than a classification vector.
We then determine the lower bound of the Mean Square
Error loss function (MSE) and find the minimum model
which could reaches this lower bound. Indeed, the lower
bound of loss function characterizes the upper bound of
the model’s capability of curve fitting. Clearly, the TTN
contains much more parameters than FCN and CNN to
reach the same level of lower bonds. In this case, it has
102 or 103 times larger than that of the FCN or CNN.
It will lead to severe time consuming problem and even
in some worst cases, the training likely to fail. Similar
with the last case, we also find the number of parameters
HTN needs is less than FCN’s, and far less than TTN’s.

B. Architecture scalability

We also evaluate regular tensor network machine learn-
ing from the perspective of architecture scalability. As
we know, people develop a great many of deep learning
models to meet the challenges in computer vision, natural
language processing and speech recognition etc., such as
the popular CNN [30], RNN, LSTM [31], GAN [32], At-
tention model and Transformer [33] etc. So just like play-
ing Jenga game, people are always able to assemble all
these models together depending on the engineering ap-
plications in practice, even for the designing of extremely
deep and complex architecture. In contrast, people have
to strictly restrict the scale of tensor networks while ap-
plying them into quantum many-body systems or ma-
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FIG. 1. Universal framework of Hybrid Tensor Networks.

chine learning, since the rapid growth of computational
complexity. Ref. [5] concludes some popular tensor net-
works such as MPS, PEPS, TTN and MERA. So far, to
our knowledge, just MPS, MERA and TTN are employed
in the preliminary applications of machine learning.

Apart from it, we take the process of message pass-
ing into consideration and find the significant different
behaviour between the tensor networks and neural net-
works. As we show in Fig.2(a), the message passes
through a neural network from the input side to the
output end layer by layer. Specifically, for any single
neuron in any layer, the input message could be dis-
tributed into multi output directions, and then access
to the next layer. In a formal style, we denote the out-
degree of a single neuron as Dout and the in-degree as
Din. Then as we know, in a neural network, any neuron
is capable of having much larger Dout than Din, such
as fully-connected network . This guarantees the one-
to-many mapping could be implemented easily by neural
networks. In contrast, Fig.2(b) and Fig.2(c) show us the
process of message passing in two typical tensor networks
including MPS and TTN. Since the message passing is
implemented by the operation of tensor contraction, thus
for a single unit/local tensor, the input message can’t be
distributed into multi output directions like what neural
network can do, unless the operation of tensor decompo-
sition is involved. This mechanism definitely limits the
scalability of regular tensor networks in machine learn-
ing, especially in the case that we need to build a deep
hierarchy.

Based on all these observations, we understand the lack
of architecture scalability is another severe problem for
regular tensor network machine learning. For all these
reasons, we think it’s not the good way to build a huge,
deep and complex deep learning model by regular tensor
networks for the practical applications of machine learn-
ing. Therefore, how can we take the advantages of tensor
networks for deep learning? The solution we try to offer
is the Hybrid Tensor Network.

TABLE I. Number of parameters of each model on MNIST

classification

model TTN LeNet-5 FCN HTN

Test accuracy 95% 99% 95% 98%

Number of

parameters 1.4× 109 1.2× 104 2.4× 106 7.7× 105

TABLE II. Number of parameters of each model on MNIST

regression

MSE Loss O(10−1) O(10−2)

FCN 8.6× 103 6× 104

CNN 6× 102 3× 103

TTN 4.3× 104 1.4× 106

HTN 6.5× 103 2.6× 104

III. HYBRID TENSOR NETWORKS

We propose the concept of Hybrid Tensor Networks
(HTN) to overcome the limitations on both represen-
tation power and scalability of regular tensor network
in machine learning. The basic idea is to introduce the
nonlinearity by the combination of tensor networks and
neural networks. In this way, we are able to embed a
tensor network into any existing popular deep learning
framework very easily, involving both model and algo-
rithm such as CNN, RNN, LSTM etc.. Then we are able
to train a HTN by the standard Back Propagation al-
gorithm (BP) and Stochastic Gradient Descend (SGD)
which can be easily found at any deep learning literature
[34]. Suppose we have a HTN which formed in the se-
quence of n tensor network layers T1, T2, ..., Tn, and sub-
sequent m neural network layers L1, L2, ..., Lm. The cost
function is denoted as Cost. Then we could compute the
partial derivative to the ith tensor network layer owing
to the BP algorithm by Eq. 2.

SAMSUNG
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SAMSUNG
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(a) (b) (c)

FIG. 2. Different ways of message passing on Neural Networks and Tensor Networks. The directions of message passing are
denoted by blue arrows. For tensor network, the message passing is implemented by the operation of tensor contraction; (a)
Neural Network ; (b) MPS; (c) TTN;

∂Cost

∂ Ti

=
∂Cost

∂ Lm

∂ Lm

∂ Lm−1
...
∂ L1

∂ Tn

∂ Tn

∂ Tn−1
...
∂ Ti+1

∂ Ti

(2)

Since the operation of tensor contraction defined as Eq. 3
is doubtless differentiable,

T
[k]
i+1 =

∑

α1 ... αp

T
[1]
i,α1

T
[2]
i,α2

... T
[p]
i,αp

(3)

where T
[k]
i+1 represents the kth tensor in the i + 1 layer.

So the last term of Eq. 2 can be deduced as Eq. 4,

∂ T
[k]
i+1

∂ Ti
[j]

=

∂
∑

α1 ... αp

T
[1]
i,α1

... T
[j]
i,αj

... T
[p]
i,αp

∂ Ti
[j]

=
∑

α1 ... αp}\{αj}

T
[1]
i,α1

... T
[j−1]
i,αj−1

T
[j+1]
i,αj+1

... T
[p]
i,αp

(4)

where T
[j]
i represents the jth tensor in the ith layer. And

the rest terms of Eq. 2 could be calculated easily accord-
ing to the principle of neural networks. Then, we can
update this tensor by using gradient descend method as
Eq. 5,

T
′

i = Ti −η
∂Cost

∂ Ti

(5)

where η denotes the learning rate. Indeed all tensors in
HTN could be updated layer by layer following this way.
Therefore, it guarantees that the HTN can be trained
in the uniform optimization framework which combines
BP and SGD. Some popular deep learning open-source
software library such as Tensorflow [35] and Pytorch [36]
offer powerful automatic differentiation program libraries
which could help us implement HTN very easily.
Furthermore, we speed up the basic operation of tensor

contraction on GPU platform, which is shown in Fig. 3.
It confirms the feasibility of implementing HTN model by
utilizing GPU platform, and shed light on the potential,
complex and practical applications of large scale HTN

model in the real-world.
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FIG. 3. Speeding up on triangle tensor network contraction
by GPU platform. The time cost is plotted on logarithmic
y-axis.

It should be noted, different from previous work that
combines tensor networks and neural networks [26], we
treat tensor networks as the “quantum units” which is in
charge of extracting quantum features from input states.
So for the designing of a deep HTN, the first thing we
should consider is to understand exactly the role ten-
sor networks will play. We show our two preliminary
attempts on quantum states classification and quantum-
classical autoencoder in the following.

A. Quantum states classification

We design a simple HTN architecture with two tree
tensor network layers followed by three dense neural net-
work layers to verify the practicability of it in classifica-
tion problem. In this case, we first transform the input
images into quantum product states without entangle-
ment, which is formed as Eq.6,

|Φ〉 = |φ(x 1)〉 ⊗ |φ(x 2)〉...⊗ |φ(x n)〉 (6)

where x1, x2, ..., xn represents each pixel; |Φ〉 is the prod-
uct states we get in the high dimensional Hilbert space;
φ denotes the feature map we mentioned by Eq.1. We
define the tree tensor network as |Ψ〉, so these two tree
tensor network layers encode the |Φ〉 into the intermedi-
ate low dimensional states |I〉 by tensor contraction, i.e.
|I〉 = 〈Ψ |Φ〉 . Afterwords, this intermediate states could
be readout by c = 〈I|M |I〉, where M is the measure-

SAMSUNG
Underline
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FIG. 4. HTN for quantum states classification. We embed
two tree tensor network layers and three dense neural network
layers.

ment operator and the c denotes the classical data that
could be processed by neural networks. For simplicity,
we merge measurement into tensor network by letting
the dimension of output bonds equal to one.
Finally, the subsequent dense neural network layers

classify the intermediate c into 10 corresponding cate-
gories by using cross entropy cost function and the pop-
ular Adam training algorithm [37] which derived from
the standard SGD. The cross entropy is defined as Eq.7

CroEn(L, P ) = −

n
∑

i=1

L (c i )log (P (c i )) (7)

where L refers to the label and P is the predicted out-
put by HTN. As can be seen, in analogy with the clas-
sical CNNs, the tensor network layers play the similar
role with the convolutional layers. But different from it,
tensor networks are more applicable to quantum states
processing. We use the popular MNIST and Fashion-
MNIST datasets as the benchmarks. The training set
consists of 60 000 (28 × 28) gray-scale images, with 10
000 testing examples. For the simplicity of coding, we
rescaled them to (32×32) images by padding zeros pix-
els. We show the schematic in Fig.4. It is easy to get
98% test accuracy on MNIST and 90% test accuracy on
Fashion-MNIST benchmarks by using this simple HTN
architecture without using any deep learning tricks.
The overview of experimental results of numerous

classical models on these tasks could be found at the offi-
cial website: (http://yann.lecun.com/exdb/mnist/) and
(https://github.com/zalandoresearch/fashion-mnist).
Though our method applies to the complex HTN, we
assume all tensors are real for simplicity. Our code of
the implementation is available at [38], and people could
find the setup of parameters in detail from it.

B. Quantum-Classical Autoencoder

We then show the application of quantum autoencoder
by using a variety of HTNs. For simplicity, we still
benchmark all models on MNIST and Fashion-MNIST
datasets. In this case, the encoder formed by a tensor
network which compresses the input quantum states into
low dimensional intermediate states. Next, these com-
pressed intermediate states could be recovered by some

FIG. 5. HTN for Quantum-classical autoencoder. We create
the encoder by two tensor network layers, and design three
different decoders by using three different setups of deconvo-
lutional layers.

typical classical neural networks. We continue to use the
Adam training algorithm, but change the cost function
as MSE (Mean Square Error):

MSE =
1

n

n
∑

i=1

(

I i −O i

)

2 (8)

where I is input data, and O denotes the reconstructed
data. Fig.5 shows us the basic architecture and we can
find the detailed setup of parameters in our code which
is available at [39].
We show a series of experimental results in both Fig.6

and Fig.7, and provide the evaluation indicators Com-
pression Ratio (CR) and PSNR (Peak Signal-to-Noise
Ratio) which is defined as Eq.9:

PSNR = 10 ∗ log 10









max 2
I

1
mn

m
∑

i=1

n
∑

j=1

(O i,j −P i,j )2









(9)

where maxI indicates the max value of input data.
We compress input product states into intermediate

representations in three different scales i.e. 8*8 grids,
4*4 grids and 2*2 grids. It should be that larger grids
are benefit of saving more original input information, so
that we could reconstruct better images from it and have
a better PSNR score. We see it clearly in both Fig.6 and
Fig.7. In contrast, the smaller intermediate representa-
tions will have higher CR. So we should achieve balance
between them in the practical quantum information ap-
plication.

C. Quantum feature engineering

Above two cases we present show the potential of de-
veloping the new concept of quantum feature engineer-
ing which is the quantum version of feature engineering
in machine learning. It is generally recognized that deep
learning model is a kind of effective models to implement
feature engineering since it is capable of extracting fea-
ture information automatically from the raw data. Such
as during the process of training a convolutional neural
network, the convolutional kernels will be trained as fea-
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FIG. 6. Quantum-Classical Autoencoder on MNIST;

FIG. 7. Quantum-Classical Autoencoder on Fashion-MNIST;

ture detectors to recognize, extract and assemble valuable
feature information which will be used in the subsequent
machine learning task such as classification, regression
or sequential analysis etc.. In analogy to this standpoint,
HTN could be treated as a well-defined hybrid quantum
classical model that is appropriate for quantum feature
engineering. Although we have no formal definition of
what quantum feature exactly is in the machine learn-
ing, we still start to investigate it involving quantum
entanglement and fidelity by using TTN in our previ-
ous work[11]. However, as a kind of typical regular ten-
sor networks as we discussed before, TTN exposes some
limitations on machine learning, and our analysis of the

entanglement and fidelity show the deficiency on super-
ficiality and coarse graining. Based on these, we believe
that the HTN will be a good choice of quantum feature
engineering method in the future work and help us to
understand how quantum features such as entanglement
and fidelity affect the performance of machine learning.

DISCUSSION

We propose the hybrid tensor networks that combin-
ing tensor networks with classical neural networks in a
uniform framework in order to overcome the limitations
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of regular tensor networks in machine learning. Based
on the numerical experiments, we conclude with the fol-
lowing observations. (1) Regular tensor networks are not
competent to be the basic building block of deep learn-
ing due to the limitations of representation power i.e.
the absence of nonlinearity, and the restriction of scal-
ability. (2) HTN overcomes the deficiency on represen-
tation power of regular tensor network by introducing
the nonlinear function from neural network units, and
offers good performance in scalability. (3) HTN could
be trained by the standard combination of BP and SGD
algorithms which offers us infinite possibilities to design
HTN following the deep learning ways. (4) HTN serves
as an applicable implementation of quantum feature en-
gineering that could be simulated on classical computer.
There are some interesting and potential research sub-

jects to be left in our future works. The first one is to do
deep learning on quantum entanglement data by HTN.
Our preliminary experiments in this paper focus on deal-

ing with product quantum states without entanglement,
but it is naturally to extend HTN to the scenario of quan-
tum entanglement data formed by MPS or PEPS etc.,
which neural network is incapable of. Moreover, there
are some works focus on tensor network based quantum
circuit which shows us the interesting way to do quantum
machine learning [19]. And also, some works focus on the
quantum-classical machine learning by using parameter
quantum circuit [40–44]. Inspired from these works, the
HTN is able to be implemented by parameter quantum
circuit in the future. In this case, the training algorithm
should be revised to guarantee the isometry of each local
tensor in the HTN.
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