
311978-1-5386-7255-6/18/$31.00 ©2018 IEEE

Robust Supervised Learning Based on Tensor
Network Method

1st YW Chen
Institute of Cyber-Systems and Control

Zhejiang University
Hangzhou, China

ewell@zju.edu.cn

2nd K Guo
College of Control Science and Engineering

Zhejiang University
Hangzhou, China

kguo@zju.edu.cn

3rd Y Pan
Institute of Cyber-Systems and Control

Zhejiang University
Hangzhou, China

ypan@zju.edu.cn

Abstract—The formalism of Tensor Network (TN) provides a
compact way to approximate many-body quantum states with 1D
chain of tensors. The 1D chain of tensors is found to be efficient in
capturing the local correlations between neighboring subsystems,
and machine learning approaches have been proposed using
artificial neural networks (NN) of similar structure. However,
a long chain of tensors is difficult to train due to exploding
and vanishing gradients. In this paper, we propose methods to
decompose the long-chain TN into short chains, which could
improve the convergence property of the training algorithm by
allowing stable stochastic gradient descent (SGD). In addition,
the short-chain methods are robust to network initializations.
Numerical experiments show that the short-chain TN achieves
almost the same classification accuracy on MNIST dataset as
LeNet-5 with less trainable network parameters and connections.

Index Terms—supervised learning, tensor network, matrix
product state, tensor train.

I. INTRODUCTION

In the past few years the field of machine learning has been

boosted by the evolution of computation hardware and deep

learning. Artificial deep neural networks (NN), such as con-

volutional neural network (CNN) [1] [2] and recurrent neural

network (RNN) [3], lie at the heart of this revolution. NN

based machine learning has been widely applied in computer

vision, natural language processing, etc. Particularly, a lot of

efforts have been devoted to apply machine learning methods

to aid the research in physics, material science and chemistry

[3], [6]. On the contrary, the design of neural network could

benefit from the research in fundamental science. For example,

there exist NN structure designs inspired by the formalism of

Matrix Product State(MPS) which has been extensively studied

in condensed matter physics [7], [9].

MPS represents a large class of quantum states whose

wavefunctions could be characterized by a tensor network

(TN) composed of 1D chain of tensors, or tensor train (TT).

Although the dimension of the tensor space on which general

quantum states are defined grows exponentially with the

increasing number of subsystems, there are certain manybody

quantum systems mainly exhibit local correlations. TT rep-

resentation is very efficient in encoding such quantum states

with linearly increasing number of parameters. Recently, the

1D chain structure of the MPS has been explored in classical

machine learning tasks. For example, there are attempts to use

the MPS method to classify images [10], compress NN layers

[11] and learn generative models [12]. The integration between

MPS network and supervised learning has been studied for the

classification task on MNIST dataset [13], [14], where a long

chain TN with 196 nodes of tensors is considered.

However, the long-chain TN is hard to train and some-

times the loss function will freeze at certain point without

converging. This is because the nodes of TN are connected

by tensor contraction, which involves a large number of

matrix multiplications if the TT is long. The product of a

large number of matrices could easily lead to explosion or

vanishing gradients, and the same issue usually causes the

training of conventional deep NN to collapse. In addition,

numerical experiments have shown that stochastic gradient

descent (SGD) is not applicable to a long-chain TN [13]. In

order to address these problems, we consider using short-chain

TN to construct the network, and integrate the short-chain

TN with conventional linear transformation layer and SGD

to reduce the number of trainable parameters and at the same

time improve the robustness of the training algorithm. In the

next section, we will introduce the framework of supervised

learning based on TN. In Section III, we will present two

short-chain methods. Numerical experiments and conclusion

are given in Section IV and V.

II. PRELIMINARIES

A. Tensor Network and Tensor Train

Fig. 1. Diagrammatic notation for a vector, matrix and order-3 tensor (from
left to right).

Tensors are multi-dimensional generalizations of matrices

and vectors [7]. Tensor is a multi-dimensional array denoted

by Ai1i2···in with ij , j ∈ {1, 2, · · · , n} being the indices

of the array. n is the order of the tensor. The diagrammatic

representations of tensors are shown in “Fig. 1”. Each tensor

Authorized licensed use limited to: Southwest University. Downloaded on May 25,2020 at 08:46:34 UTC from IEEE Xplore. Restrictions apply.

赖红
高亮

312

node is drawn as a circle with edges. Circle represents the

main body and edges represent the individual indices of the

tensor. Therefore, a circle with one edge indicates a vector. If

the circle has two edges, the node corresponds to a matrix.

One of the most important tensor operations is contraction,

which refers to taking the inner product of two tensors along

a specified index. The nodes in TN are connected by tensor

contractions. An example in “Fig. 2” describes the contraction

of two order-3 tensors along the edge j. Singular Value

Fig. 2. Diagrammatic notation for tensor contraction between two order-3
tensors.

Decomposition (SVD) can be applied on tensors as well.

“Fig. 3” shows the process of decomposing one order-4 tensor

into one 2-order tensor and two 3-order tensors through SVD.

More details can be found in [13]. Tensor network is a

Fig. 3. Diagrammatic notation for singular-value decomposition into 3 nodes.

diagram tells us how to combine several tensors into a single

composite tensor [7].MPS or TT is one of the tensor network

representations, see “Fig. 4”.

Fig. 4. The matrix product state (MPS) also called tensor train (TT)
decomposition of a multi-index tensor.

B. Supervised Learning

“Fig. 5” depicts the structure of an artificial NN.

Fig. 5. From left to right, inputs are summed before the activation node.

Normally the samples will be divided into train set and

test set. In this paper, we focus on supervised learning where

each sample is associated with a correct label. Training is

the process of fitting a transformation that maps inputs to the

correct labels. During this process, the outputs of the network

will be compared with the correct label. The distance between

the current output and the correct label will be calculated and

in each training epoch the network parameters will be adjusted

through gradient descent that aims to decrease the distance.

C. Supervised Learning Method based on TN Method

Supervised learning based on MPS method has been pro-

posed in [13] a long-chain TT with 196 neurons is used

as the NN architecture to classify the handwritten numbers

from MNIST dataset. Each image from the MNIST dataset is

associated with a label indicating what digit it is. First, the

images are compressed from 784 pixels to 196 pixels, and

then each pixel value x is mapped by

f(x) = (sin
π

2
x, cos

π

2
x) (1)

to vectors. The network is constructed by 196 tensors in series

connection as shown in “Fig. 6”. Each neuron has one edge

receiving the input from the corresponding pixel. The training

Fig. 6. MPS decomposition for weight layer, where the left is the artificial
neural network and the right is the MPS framework.

Fig. 7. The steps for training. Labels represented as f can be placed on an
arbitrary neuron in TN.

algorithm can be divided into four steps, see “Fig. 7”. Suppose

the output edge is associate with the second neuron from the

Authorized licensed use limited to: Southwest University. Downloaded on May 25,2020 at 08:46:34 UTC from IEEE Xplore. Restrictions apply.

313

left. First, the second and third neurons are contracted to form

a bonded neuron Bl. The neurons on the left and right of the

bonded neuron are contracted to form the left and right inputs

L1 and R1 to Bl. To be more precise, Ri and Li are calculated

as

Ri =
∑

{m}

∑

{s}
(wmi+1mi+2

si+2
xsi+2) · · · (wmN−1

sN xsN) (2)

Li =
∑

{m}

∑

{s}
(wm1

s1 xs1) · · · (wmi−1mi−2
si−1

xsi−1) (3)

Here xsj denotes the data input at the j-th location. The

training is based on gradient decent. The cost function is

defined as

C =
1

2

N∑

n=1

L∑

l=1

(f − l)2 (4)

In this equation, N is the total number of training samples,

L is the number of categories of the samples, f is the output

of the TT network. Note that categorical encoding of the label

is invoked here and so l takes the value either 0 or 1.

The gradient is calculated as

�B = −∂C

∂B
(5)

=
N∑

n=1

L∑

l=1

(l − f)
∂f

∂B
(6)

=
N∑

n=1

L∑

l=1

(l − f)Φ̃ (7)

Φ̃ is the contraction of Lj−1, Rj−1, xj , xj+1. The process of

update is outlined in “Fig. 8”. In the last step, an appropriate

learning rate α is chosen for the the update of Bl. After the

Fig. 8. Graphical expression of updating Bl. The L and R neurons are left
contraction and right contraction, respectively.

update, Bl should be decomposed into two nodes in order to

keep TT network in the original form. Here SVD is employed

and Bl are decomposed into three neurons. Then the middle

and the right neurons are contracted to form a new neuron

W
′
j+1 which replaces Wj+1. Wj is replaced by the left node

W
′
j . This procedure is repeated until the end of the chain has

been reached, which finishes one sweeping. The next sweeping

then starts from the rightmost neurons.

III. SHORT-CHIAN METHOD

The long-chain TT network has two major drawbacks:

• The training process is difficult to converge. The gradient

is either too big or too small due to the large number of

contractions.

• SGD does not perform well for long-chain TT and so

all training samples must be used in the calculation of

gradient per update.

In this section, we circumvent these issues by reducing

the length of TT in the network. Two different proposals are

discussed as follows.

A. Each Neuron Covers More Than One Pixel

In principle, each neuron in the TT could associate with

more than one pixel from the image. This can be easily done

by increasing the bond of the edge associated with the input.

Here bond refers to upper bound on the edge index. For

example, {x1, · · · , xj} can be grouped together as a single

input to the first neuron with bond strength 14. By this way

we can shorten the length of chain from 196 to 28, i.e. every

neuron receives the input from seven pixels simultaneously.

After this reduction, SGD becomes applicable. In each update

Fig. 9. Each neuron covers more than one pixel by increasing the input bond
dimension.

only a batch of samples will be used to calculate the gradient,

which greatly accelerates the training speed and at the same

time enhances the performance of the optimization algorithm.

B. Short-chains Combined with Linear Transformation Layer

TT can be combined with other type of component. Here

we combine the TT layers with a linear transformation layer.

The structure of this network is shown in “Fig. 10”. The entire

network is composed of 14 TT components which means the

image is divided into 14 parts. Each TT covers 14 pixels with

14 neurons. The output of each TT layer Yi is sent to the

linear transformation layer, i.e. the final output is a linear

transformation of the outputs of the TT layers. The gradients

Authorized licensed use limited to: Southwest University. Downloaded on May 25,2020 at 08:46:34 UTC from IEEE Xplore. Restrictions apply.

314

Fig. 10. Short-chains combined with linear transformation layer.

on the TT component can be calculated by back propagation

(BP) as

�Bk = − ∂C

∂Yk

∂Yk

∂Bk
(8)

= Wk

Nk∑

n=1

L∑

l=1

(l − f)
∂Yk

∂Bk
(9)

= Wk

Nk∑

n=1

L∑

l=1

(l − f)Φ̃k (10)

Here Nk is the number of neurons in each TT component.

Wk is the weighted array that defines the linear transformation

layer. Similarly, the gradient of Wk can be calculated by

�W = − ∂C

∂W
(11)

=
N∑

n=1

L∑

l=1

(l − f)Φ̃yk
(12)

where Φ̃yk
is the contraction of Yk.

The training process is a bit different from single TT. In

each step, two neurons are updated in each TT component

and then the linear transformation layer is optimized. Each

TT component has the same number of neurons so that they

will finish the sweeping at the same time.

IV. NUMERICAL RESULT

The two short-chain methods are tested on MNIST dataset.

Here we use the same data mapping as in “(1)”. The size of

train set and test set are 60000 and 10000, respectively.

A. Each Neuron Covers More Than One Pixel

The numerical result is shown in “Fig. 11”. Each iteration

includes two sweeping, namely, left to right and then right to

Fig. 11. Bond strength vs number of iterations in training of STN.

left. The weights of each tensor are updated four times in one

iteration. As we can see, bond strength between the neurons

is a crucial factor. When the bond strength is 10, the error rate

is above 0.2 and the classification accuracy on the test set is

only around 80%. This may be explained by the unbalanced

bonds for the data input and nearby neurons. In this case the

bond of the input edge is 14 but the bond strength between

the neurons is only 10 which cannot forward all of features

through the chain. When we improve the bond strength, the

accuracy could be significantly improved. We achieve 9% and

4.4% error rates for the bond strength being 20 and 50.

B. Short-chains Combined with Linear Transformation Layer

Fig. 12. The results of short-chains combined with linear transformation layer
for different learning rate.

The numerical result is shown in “Fig. 12”. In each epoch

we update the weights twice by gradient decent. As can be

seen in “Fig. 12”, the best learning rate is 4 and with 80

sweepings we achieve an error rate of 7.24% using bond

Authorized licensed use limited to: Southwest University. Downloaded on May 25,2020 at 08:46:34 UTC from IEEE Xplore. Restrictions apply.

315

strength 10. Compared to the method in the last subsection,

this one uses lower bond strength and yet achieves better

performance.

C. Compared to CNN

TABLE I
COMPARISON BETWEEN SHORT-CHAIN TN AND CNN

Type of neural network LeNet-5 STN(50) STN(10) with LT
Trainable parameters 59968 924000 40980
Connection numbers 330068 72892 21818

accuracy 0.981 0.956 0.9276

We consider the convolutional neural network proposed by

LeCun [1] called LeNet-5. As shown in “Table. I”, LeNet-

5 has the maximum number of connections and short-chain

TN (STN) with bond strength 50 has the maximum number

of trainable parameters. Although the accuracy of STN with

linear transformation layer is lower than other two networks,

it has the minimum number of trainable parameters and

connections. In STN training, one sweeping incurs two updates

of each weight parameter. CNN takes two epochs to update

each weight parameter twice. The performance of STN and

CNN are compared on this basis and the result is shown in

“Fig. 13” and “Fig. 14”.

Fig. 13. Error rate comparison between STN(50) and LeNet-5.

Both STN(50) and LeNet-5 are trained with stochastic

gradient descent. Interestingly, the result from “Fig. 12” shows

that STN(50) is faster in converging. “Fig. 13” compares

STN(10) with a linear transformation layer and CNN. Sim-

ilarly, after 15 epochs the training process is completed for

STN.

V. CONCLUSION

In this paper, we shorten the length of TT to improve the

robustness and convergence property of supervised learning

based on TN method. In contrast to long-chain case, the

stochastic gradient descent algorithm can be used in the

training of short-chain TN which greatly improves the per-

formance. We test our proposals on the MNIST dataset and

Fig. 14. Comparison between STN(10) with LT and LeNet-5 for 60 Epochs.

achieve over 95% classification accuracy. We compare the

numerical results with LeNet-5 and find that short-chain TN

converges faster in training.

REFERENCES

[1] Y. LeCun, Y. Bengio, “Convolutional Networks for Images, Speech, and
Time-Series,” Handbook of Brain Theory & Neural Networks,1995.

[2] C. Szegedy, W. Liu, Y. Jia, et al, “Going deeper with convolutions,”
ArXiv:1409.4842v1[cs.CV] 17 Sep 2014.

[3] T. Mikolov, M. Karafit, L. Burget, J. Cernock, S. Khudanpur, “Recurrent
neural network based language model,” Interspeech, Conference of
the International Speech Communication Association, Makuhari, Chiba,
Japan, September, 2010 :1045-1048.

[4] G. Pilania, C. Wang, X. Jiang, S. Rajasekaran, and R. Ramprasad,
“Accelerating materials property predictions using machine learning,”
Scientic Reports 3, 2810 EP (2013).

[5] Y. Saad, D. Gao, T. Ngo, S. Bobbitt, J.R. Chelikowsky, and W.
Andreoni, “Data mining for materials: Computational experiments with
AB compounds,” Phys. Rev. B 85, 104104 (2012).

[6] B. Karlk, “Machine Learning Algorithms for Characterization of EMG
Signals,” The 6th International Conference on Computer Research and
Development (2014).

[7] G. Eason, B. Noble, and I.N. Sneddon, “Hand-waving and Interpretive
Dance:An Introductory Course on Tensor Networks,” Jacob C. Bridge-
man, Christopher T. Chubb, arXiv:1603.03039v4 [quant-ph] 16 May
2017.

[8] U. Schollwock, “The density-matrix renormalizationgroup in the age of
matrix product states,” Annals of Physics 326, 96-192 (2011).

[9] G. Evenbly and G. Vidal, “Tensor network states and geometry,” Journal
of Statistical Physics 145, 891-918 (2011).

[10] J.A. Bengua, H.N. Phien, and H.D. Tuan, “Optimal feature extraction
and classification of tensors via matrix product state decomposition,”
2015 IEEE Intl. Congress on Big Data (BigData Congress) (2015)
pp.669-672.

[11] A. Novikov, D. Podoprikhin, A. Osokin, et al, “Tensorizing neural
networks,” arxiv:1509.06569, (2015).

[12] Z. Han, J. Wang, H. Fan, L. Wang, P. Zhang, “Unsupervised Generative
Modeling Using Matrix Product States,” arxiv:1709.01662, (2017).

[13] E. M. Stoudenmire and D. J. Schwab, “Supervised Learning with
Quantum-Inspired Tensor Networks,” Advances in Neural Information
Processing Systems 29, 4799 (2016), May 2017.

[14] A. Khan, B. Baharudin, L. H. Lee, and K. Khan, “A Review of Machine
Learning Algorithms for Text-Documents Classification,” Journal of
Advances in Information Technology, vol. 1, no. 1, pp. 420, 2010.

Authorized licensed use limited to: Southwest University. Downloaded on May 25,2020 at 08:46:34 UTC from IEEE Xplore. Restrictions apply.

