量子机器学习资料整理

由于目前张量网络的工作逐渐增多,很多实验室都封装了自己的张量收缩算法包,同时还有一些论文给出了具体的工作,在此归类梳理一下方便日后的学习。

Workshop

  • IJCAL: International Workshop on Tensor Network Representations in Machine Learning
  • NeurIPS2020: Quantum tensor networks in machine learning
  • ipam: Tensor Network States and Applications, APRIL 19 - 23, 2021

Learning Materials

  • TN_tutorial是冉仕举老师对张量网络机器学习的一个详细的介绍,该仓库是Bilibili视频的配套代码,搭配食用效果更佳。
  • Tensors.net是一个开源的网站,里面图解了各种张量网络算法,并给出了Python/Matlab/Julia的相关实现,简直良心
  • Tensor Networks提供了一些张量网络机器学习的视频、论文以及对应代码,也是做了于本仓库类似的内容,推荐大家结合代码去学习,事半功倍!
  • awesome-quantum-machine-learning包含了全网所有的量子机器学习基础知识,算法,研究材料,项目以及项目描述,例如量子遗传算法、量子隐马尔可夫模型、基于主成分分析的量子分类算法等等,有很多比较前沿的工作在里面。
  • tensornetwork.org张量网络算法、理论和软件的介绍

Tensor network library

大部分张量网络收缩库都是基于Python,还有少量的C++、Matlab,在下面会注明

  • TensorNetwork,Google于2019年开源的Python库,目前应用最为广泛
  • qml是用于量子机器学习的Python工具包,有回归、预测、学习曲线等等,能省很多功夫去造轮子
  • mpnum是基于Python的MPS包,还封装有MPO、PMPS、MPA的张量格式。
  • netket是一个开源代码项目,它提供了用于通过ANN和ML研究多体量子系统的前沿方法,它是基于JAX构建的Python库。
  • tenpy Python库,用于模拟具有张量网络的高度相关的量子系统,有比较详细的文档和算法演示示例(例如TEBD和DMRG)
  • PyQPanda本源量子开发的量子计算编程框架,提供了详细的文档和量子算法介绍,能够通过线路模拟算法。
  • tncontract Python的开源张量网络库,比较小众,采用Numpy库做为后端,包含很多用于一维和二维张量网络的算法。
  • TNML(C++) 出自大佬emstoudenmire之手
  • ITensor(C++) 高效的张量网络计算库,提供了相关文档

Survery with code(Updating…)

  • Fully-Connected Tensor Network Decomposition and Its Application to Higher-Order Tensor Completion [Paper] [Code]
  • Segmenting two-dimensional structures with strided tensor networks [Github]
    • Raghavendra Selvan et al. (CVPR 2021)
  • Generative tensor network classification model for supervised machine learning [arXiv] [Github]
    • Zheng-Zhi Sun, et al. (PRB 2020)
  • Tangent-Space Gradient Optimization of Tensor Network for Machine Learning [arXiv] [Github]
    • Zheng-Zhi Sun, et al. (PRE 2020)
  • Multi-layered tensor networks for image classification [arXiv] [Github]
    • Raghavendra Selvan et al. (NeurIPS 2020)
  • Quantum Tensor Network in Machine Learning: An Application to Tiny Object Classification [arXiv] [Github]
    • Fanjie Kong et al. (NeurIPS 2020)
  • Tensor Networks for Medical Image Classification [Github]
    • Raghavendra Selvan et al. (MIDL 2020)
  • Deep convolutional tensor network [arXiv] [Github]
    • Philip Blagoveschensky et al. (Preprint. Under review 2020)
  • Quantum-Classical Machine learning by Hybrid Tensor Networks [arXiv] [Github]
  • Machine Learning by Two-Dimensional Hierarchical Tensor Networks: A Quantum Information Theoretic Perspective on Deep Architectures [arXiv] [Github]
    • Ding Liu et al. (NJP 2019)
  • Unsupervised Generative Modeling Using Matrix Product States [arXiv] [Github]
    • Zhao-Yu Han et al. (PRX 2018)
  • Supervised Learning with Quantum-Inspired Tensor Networks [Github]
    • E.M. Stoudenmire et al. (NIPS 2016)
  • Copyright: Copyright is owned by the author. For commercial reprints, please contact the author for authorization. For non-commercial reprints, please indicate the source.

扫一扫,分享到微信

微信分享二维码
  • Copyrights © 2015-2024 YuleZhang's Blog
  • Visitors: | Views:

请我喝杯咖啡吧~

支付宝
微信